Integrated watershed management: modelling and monitoring water allocation Dr. Zoltán Vekerdy #### **Outline** - The conflict - Wetlands - Integrated water resources management: the Uromiyeh and the Sistan projects - Some other examples # Why Lake Uromiyeh is so vulnerable? - The environmental health of wetlands is based on water. - The water is shallow: Large surface (evapotranspiration). - Shallow depth (temperature changes). - Relatively small quantity of water (high concentration of pollutants). - The surface area changes or even the whole wetland dries up. - Special problem of Lake Uromiyeh: no water outflow, i.e. saline lake (with some freshwater/brackish water wetlands on its shores) Problem: water allocation between agriculture and the ecosystem #### Modelling approach to IWRM in Uromiyeh #### Sub-watersheds in the Uromiyeh Basin # Input to the system: precipitation #### Losses from the system using SEBAL #### Modelled sub-watershed: Gadar Chai ### The water courses and gauging stations #### Conceptual model of Ghadar Chai #### Water network in Ribasim #### Long-term calibration of flow #### Future developments #### **Scenarios** - Agriculture without efficiency increase - Priority 1: domestic and industrial supply - Priority 2: agriculture and fishponds with present efficiency - Priority 3: wetlands with present demand + streamflow - Agriculture with efficiency increase - P1: domestic and industrial supply - P2: agriculture and fishponds with increased efficiency - P3: wetlands with increased demand + streamflow - Environment without efficiency increase - P1: domestic and industrial supply - P2: wetlands with present demand + streamflow - P3: agriculture and fishponds with present efficiency - Environment with efficiency increase - P1: domestic and industrial supply - P2: wetlands with increased demand + streamflow - P3: agriculture and fishponds with increased efficiency #### Conceptual model of the Uromiyeh Basin # Some results of scenario analysis | -
Node index and name | Demand
(Mcm) | Yearly a
Deficit
(Mcm) | werage
Demand
(m3/s) | Deficit
(m3/s) | Success ti
number
(-) |
me steps
rate
(%) | Success
number
(-) | s years
rate
(%) | Number of
successive
failure years | |---|--|--|--|---|--|--|--------------------------------|---|--| | Fir_Wa_Pay gha pre irr Fir_Wa_Osh pre Irr Fir_Wa_Nagh Pre Irr Fir_Wa_ Osh grav irr Fir_Wa_Hassanlo grav Irr Fir_Wa_Hassanlu Pre Irr | 7.28
34.92
12.23
138.16
73.23
31.73 | 0.3
9.03
6.64
18.47
3.26
0.87 | 0.23
1.11
0.39
4.38
2.32
1.01 | 0.01
0.29
0.21
0.59
0.1
0.03 | 383
310
278
342
380
395 | 93.9
76
68.1
83.8
93.1
96.8 | 21
9
0
12
18
32 | 61.8
26.5
0
35.3
52.9
94.1 | 2
4
1
4
3
0 | | Fir_Wa_Nagh_Grav Irr Total | 80.89
378.44 | 11.67
50.24 | 2.57
12 | 0.37 | 302 | 74 | 0 | 0 | 1 | | | Yearly average | | | | Success time steps | | Success years | | Number of | | |------------------------------|----------------|---------|--------|---------|--------------------|------|---------------|------|---------------|--| | | Demand | Deficit | Demand | Deficit | number | rate | number | rate | successive | | | Node index and name | (Mcm) | (Mcm) | (m3/s) | (m3/s) | (-) | (%) | (-) | (%) | failure years | | | Lfl_Wa_payghaleh | 15.78 | 2.86 | 0.5 | 0.09 | 324 | 79.7 | 8 | 23.5 | 4 | | | Lfl_Wa_Naghadeh | 15.78 | 1.87 | 0.5 | 0.06 | 344 | 84.3 | 13 | 38.2 | 4 | | | Lfl_Wa_yadgarlo wetland | 4.94 | 0.19 | 0.16 | 0.01 | 395 | 96.8 | 32 | 94.1 | 0 | | | Lfl_Wa_dogehsangi wetland | 3.34 | 0.03 | 0.11 | 0 | 403 | 98.8 | 32 | 94.1 | 0 | | | Lfl_wa_gerdeh&solduz wetland | 3.52 | 0.16 | 0.11 | 0.01 | 388 | 95.1 | 19 | 55.9 | 2 | | | Total | 43.35 | 5.12 | 1.37 | 0.16 | | | | | | | # Total water availability results | Scenario | Area of agricultural
lands (ha) | Gravitational lands
efficiency (%) | Under-pressure lands
efficiency (%) | Agricultural water
demand and shortage
(MCM) | Drinking and industrial
water demand and
shortage (MCM) | Minimum stream flow
water demand and
shortage (MCM) | Wetlands water demand
and shortage (MCM) | Inflow to Lake
Uromiyeh(MCM) | Fishpond water demand
and shortage (MCM) | |-----------------|------------------------------------|---------------------------------------|--|--|---|---|---|---------------------------------|---| | | | | | 378 | 40.4 | 31.56 | 11.81 | | 35.43 | | First scenario | 50,000 | 32 | 64 | 50 | 0.53 | 4.73 | 0.38 | 90.44 | 3.66 | | | | | | 378 | 40.4 | 31.56 | 11.81 | | 35.43 | | Second scenario | 50,000 | 32 | 64 | 56 | 0.53 | 1.8 | 0.01 | 92.5 | 3.26 | | | | | | 312 | 40.4 | 31.56 | 11.81 | - | 35.43 | | Third scenario | 50,000 | 50 | 64 | 17.8 | 0.3
0.02 | 1.32
0.46 | 0.01 | 92
114.5 | 1.35
0.7 | | | | | | 312 | 40.4 | 31.56 | 11.81 | 114.58 | 35.43 | | Fourth scenario | 50,000 | 50 | 64 | 22.8 | 0.3
0.11 | 3.08
1.61 | 0.24
0.21 | 94
114 | 2.65
1.58 | ### Major conclusions of the project - The recent water use is already more than the environmentally tolerable. - Further development without efficiency improvement is killing Lake Uromiyeh. - Even the planned efficiency improvement is not enough for balancing the population pressure (increasing agricultural production) and the need for energy production. #### The watershed of Lake Velence # Topography #### Issues, questions (many more are possible) - Strong human impact (intensive agriculture, tourism, discharge control, water outtake, waste water, etc.) - Need for 'precision water and environmental management'. - What are the elements of the water budget of the lake? - How much can the individual water users change their practice? - How much can we improve on the water budget estimation by using spatial information? - How can stakeholders be involved in the management of the whole watershed? # Lake level fluctuations of Lake Velence (Hungary)